A Legendrian Thurston–bennequin Bound from Khovanov Homology

نویسنده

  • LENHARD NG
چکیده

We establish an upper bound for the Thurston–Bennequin number of a Legendrian link using the Khovanov homology of the underlying topological link. This bound is sharp in particular for all alternating links, and knots with nine or fewer crossings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Thurston–bennequin Number of +adequate Links

The class of +adequate links contains both alternating and positive links. Generalizing results of Tanaka (for the positive case) and Ng (for the alternating case), we construct fronts of an arbitrary +adequate link A so that the diagram has a ruling; therefore its Thurston–Bennequin number is maximal among Legendrian representatives of A. We derive consequences for the Kauffman polynomial and ...

متن کامل

Legendrian and Transverse Twist Knots

In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the m(52) knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least n different Legendrian representatives with maximal Thurston–Bennequin number of the twist knot K−2n with crossing number 2n+1. In this paper we give a complete classification of Legendrian and transverse representatives o...

متن کامل

On Arc Index and Maximal Thurston–bennequin Number

We discuss the relation between arc index, maximal Thurston– Bennequin number, and Khovanov homology for knots. As a consequence, we calculate the arc index and maximal Thurston–Bennequin number for all knots with at most 11 crossings. For some of these knots, the calculation requires a consideration of cables which also allows us to compute the maximal self-linking number for all knots with at...

متن کامل

Rational Linking and Contact Geometry

In the note we study Legendrian and transverse knots in rationally null-homologous knot types. In particular we generalize the standard definitions of self-linking number, Thurston-Bennequin invariant and rotation number. We then prove a version of Bennequin’s inequality for these knots and classify precisely when the Bennequin bound is sharp for fibered knot types. Finally we study rational un...

متن کامل

Classification of Legendrian Knots and Links

The aim of this paper is to use computer program to generate and classify Legendrian knots and links. Modifying the algorithm in [11], we write a program in Java to generate all grid diagrams of up to size 10. Since classification of Legendrian links up to Legendrian isotopy is equivalent to grid diagrams modulo a set of Cromwell moves including translation, commutation and X:NE,X:SW (de)stabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005